
[1] 

 

  

On the Quality of the Nimbus 7 LIMS Version 6 Water Vapor Profiles and 

Distributions 

 

E. E. Remsberg1, M. Natarajan1, G. S. Lingenfelser2 

R. E. Thompson3, B. T. Marshall3, and L. L. Gordley3  

 

1NASA Langley Research Center 

21 Langley Blvd., Mail Stop 401B 

Hampton, VA 23681 USA 

Ellis.E.Remsberg@nasa.gov 

 

2SSAI 

1 Enterprise Parkway 

Hampton, VA 23661 USA 

 

3GATS, Inc. 

11864 Canon Blvd., Suite 101 

Newport News, VA 23606 USA 

 

 

June 2009 

 



[2] 

 

Abstract 

This report describes the quality of the Nimbus 7 Limb Infrared Monitor of the 

Stratosphere (LIMS) water vapor (H2O) profiles of 1978/79 that were processed with a 

Version 6 (V6) algorithm and archived in 2002.  The V6 profiles incorporate a better 

knowledge of the instrument attitude for the LIMS measurements along its orbits, leading 

to improvements for its temperature profiles and for the registration of its water vapor 

radiances with pressure.  As a result, the LIMS V6 zonal-mean distributions of H2O 

exhibit better hemispheric symmetry than was the case from the original Version 5 (V5) 

dataset that was archived in 1982.  Estimates of the precision and accuracy of the V6 H2O 

profiles are developed and provided.  Individual profiles have a precision of order 5% 

and an estimated accuracy of about 19% at 3 hPa, 14% at 10 hPa, and 26% at 50 hPa.  

Profile segments within about 2 km of the tropopause are often affected by emissions 

from clouds that appear in the finite field-of-view of the detector for the LIMS H2O 

channel.  Zonally-averaged distributions of the LIMS V6 H2O are compared with those 

from the more recent Microwave Limb Sounder (MLS) satellite experiment for 

November, February, and May of 2004/2005.  The patterns and values of their respective 

distributions are similar in many respects.  Effects of a strengthened Brewer-Dobson 

circulation are indicated in the MLS distributions of the recent decade versus those of 

LIMS from 1978/79.  A tropical tape recorder signal is present in the 7-month time series 

of LIMS V6 H2O with lowest values in February 1979, and the estimated, annually-

averaged “entry-level” H2O is 3.5 to 3.8 ppmv.  It is judged that this historic LIMS water 

vapor dataset is of good quality for studies of the near global-scale chemistry and 

transport for pressure levels from 3 hPa to about 70 to 100 hPa. 
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1.  Background 

 

The Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS) experiment operated 

successfully from 25 October 1978 through 28 May 1979, the planned lifetime of the 

onboard cryogen gases used to cool its detectors (Gille and Russell, 1984).  LIMS 

provided daily, near-global distributions of stratospheric H2O. The LIMS Version 5 (V5) 

Level 2 profiles and Level 3 zonal Fourier coefficients were archived in 1982 and 1983, 

respectively, and they have been used for numerous scientific studies.  The present report 

describes the quality of the updated, Version 6 (V6) H2O dataset, archived in 2002. 

 

As a review, it is noted that the original, LIMS V5 H2O distributions were used to 

examine issues related to stratospheric chemistry (e.g., LeTexier et al., 1988; Garcia and 

Solomon, 1994) and transport (e.g., Gray and Pyle, 1986; Butchart and Remsberg, 1986; 

and Gille et al., 1987).  Its H2O distributions were also used in studies of the stratospheric 

budget of water vapor, and, in particular, to estimate the H2O mixing ratio as it enters the 

tropical stratosphere from below (Jones et al., 1986; Hansen and Robinson, 1989).  Their 

estimated, annually-averaged, “entry-level” values ranged from 2.7 ppmv to 3.3 ppmv.  

Russell (1987) and Remsberg et al. (1990) provided the monthly distributions of 

stratospheric H2O from the LIMS V5 Level 3 (mapped) dataset.  Later, Chiou et al. 

(1993; 1996) compared the LIMS V5 distributions with those from the Stratospheric 

Aerosol and Gas Experiment (SAGE II) of the Earth Radiation Budget Satellite (ERBS) 

and from the Stratospheric and Mesospheric Sounder (SAMS) instrument of Nimbus 7.  

They found general agreement among those three data sets, at least within their combined 
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error bars.  However, the H2O values from all three experiments were subject to rather 

large errors, particularly in the lower stratosphere.  Their respective meridional gradients 

of H2O also differed somewhat with each other and with those obtained from subsequent 

ER-2 aircraft measurement campaigns. 

 

The precisions and accuracies for the LIMS V5 H2O profiles were reported in Russell et 

al. (1984), Remsberg et al. (1984a), and Remsberg and Russell (1987).  Their combined 

errors are no greater than 17% in the middle stratosphere (3 to 30 hPa), due primarily to 

the effects of profile registration and temperature biases for their retrievals.  Their quality 

is not as good near the stratopause because that is where the radiances approach the 

detector noise for the H2O channel.  In the upper stratosphere the radiances originate 

from strong water vapor lines in the LIMS broadband H2O channel from 6.4 to 7.3-μm.  

Those lines are nearly saturated and lead to a highly non-linear relation between radiance 

and retrieved H2O concentration.  Kerridge and Remsberg (1989) reported on the effects 

of an additional complication for the retrieval of upper stratospheric LIMS H2O, 

particularly during daylight.  They showed that the retrieved H2O values at those altitudes 

were larger for day than for night--a consequence of not accounting for non-local 

thermodynamic equilibrium (non-LTE) emissions in the daytime H2O radiances.  That 

additional, non-LTE emission is most significant in the mesosphere, but its residual 

effects also extend to the profile segments of the upper stratosphere (Mertens et al., 

2002). 
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The LIMS V5 H2O is also not very accurate in the upper troposphere/lower stratosphere 

(UT/LS) (Kley et al., 2000).  In particular, there are systematic H2O errors just above the 

tropical tropopause due to the LIMS V5 temperatures being a bit too warm, to the 

uncertainties for the interfering effects of the pressure-induced O2 continuum emission, 

and to the contaminating emissions from aerosols and clouds that were not accounted for.  

Furthermore, in the tropics there is a sharp increase of H2O and temperature just below 

the tropopause.  The instantaneous, finite vertical field-of-view (FOV) width of the LIMS 

H2O channel averages across the region of the tropopause and provides H2O profiles 

having a vertical resolution of about 4.5 km.   Although the deconvolution procedure 

accounts for the effects of any FOV side lobes in the radiances prior to their retrieval, the 

spatial smoothing effect of the main FOV lobe is still present. 

 

Section 2 of this report describes the important changes in the LIMS V6 water vapor 

algorithm and the improvements for its profiles and distributions.  Its zonally-averaged, 

nighttime distribution for mid November is compared qualitatively with the Earth 

Observing System (EOS Aura) Microwave Limb Sounder (MLS) Version 2.2 (v2.2) H2O 

of 2004.  Both cross sections exhibit many of the same features.  Section 3 gives 

estimates of the precision and systematic errors for single LIMS V6 H2O profiles.  

Section 4 contains qualitative comparisons between LIMS and MLS for February and 

May.  Although their overall distributions are similar, they show significant differences 

near the tropical hygropause and in the upper stratosphere at high latitudes.  Section 5 

contains a brief discussion of some initial scientific findings from the LIMS distributions, 

and Section 6 summarizes the quality of the V6 H2O dataset. 
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2.  LIMS V6 Water Vapor  

2.1.  LIMS V6 algorithm for H2O 

A major reason for the update of the overall LIMS algorithm to V6 is the incorporation of 

more recent spectroscopic line parameters for the retrievals of the LIMS profiles of 

temperature and each of its species (ozone, water vapor, nitric acid, and nitrogen 

dioxide), so that they are more compatible with the corresponding profile quantities 

obtained with the follow-on sensor systems of the Upper Atmosphere Research Satellite 

(UARS), of EOS Aura, and of the Environmental Satellite (ENVISAT) of the European 

Space Agency.  The V6 forward model for the H2O and CH4 radiances in the LIMS 

channel makes use of HITRAN 1996 line parameters (Rothman et al., 1998), although the 

parameters for the ν2 lines of H2O from 6.4 to 7.3 µm are nearly unchanged from the ones 

used for the retrieval of the earlier V5 profiles.  Effects of overlap for the lines of H2O 

and CH4 are accounted for with an additional, band model emissivity table.  The effects 

of the underlying, interfering radiance from the O2 continuum are updated based on the 

empirical model of Thibault et al. (1997).  The temperature dependence of that model is 

significantly different from what was used for O2 in V5, particularly for the colder 

temperatures of the lower stratosphere.  This change is one reason that the retrieved V6 

H2O profiles of the tropical lower stratosphere are not quite as dry as those of V5.   

 

The Nimbus 7 spacecraft was in a Sun-synchronous orbit, and the LIMS radiometer 

viewed the atmospheric limb and in a direction 146.5 degrees clockwise from the 

spacecraft velocity vector (Gille and Russell, 1984).  Figure 1 is a projection of the 
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instantaneous FOVs for the LIMS channels at the atmospheric limb for the tops and 

bottom of a down/up scan pair, traveling from right to left along the orbit.  The angular 

resolution for the H2O detector is 1 milliradian, and it subtends a vertical width of 3.6 km 

for the tangent layer at the horizon.  Effectively, it is the geometry of the limb 

measurement that determines the vertical resolution of its retrieved profiles.   

 

Accuracies for the LIMS H2O profiles are dominated by the uncertainties in the 

atmospheric temperature-pressure profiles (or T(p)) and the associated registration of the 

H2O radiances with pressure-altitude (Russell et al., 1984).  The better determination of 

spacecraft/instrument orbital attitude for LIMS V6 led to an improved registration for the 

radiances and more accurate T(p) values.  The point spacing for the measured Level 2 

profile data is 0.375 km from all the LIMS channels.  However, one can see from Figure 

1 that the CO2 channels used to retrieve T(p) have a vertical width that is half that of the 

water vapor channel.  The potential mismatch between the two was overcome by the 

methods used to condition the radiances for instrument effects and by the interleave 

retrieval approach, together leading to an effective vertical resolution of 3.7 km for all the 

radiance profiles (Remsberg et al., 2004).  As a result, the V6 H2O profiles and 

distributions have a quality and stability that is improved over that from the original V5 

algorithm.  The retrieved V6 temperatures are closely compatible with the H2O radiances, 

such that the effect of any vertical temperature structure is not very noticeable in the 

retrieved H2O profiles.  A Gaussian smoother with a nearly 1.5 km vertical halfwidth at 

half maximum was employed for the final retrieval of the H2O profiles.  The V6 profiles 
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were also output at the more frequent spacing of about 1.6 degrees of latitude along an 

orbit, rather than the nearly 4 degree separations of the V5 dataset. 

 

First-order corrections for the interfering effects of CH4 were achieved using the seasonal, 

zonal mean cross sections of 1994 from the UARS Halogen Occultation Experiment 

(HALOE) dataset, but extrapolated back to 1979 based on the annually-increasing CH4 at 

ground level.  Note that we did not elect to use the concurrent CH4 distributions from the 

Nimbus 7 Stratosphere and Mesosphere Sounder (SAMS) experiment because they only 

extended down to about the 20-hPa level (Jones and Pyle, 1984).  A similar first-order 

correction for the interfering emissions from stratospheric aerosols was developed based 

on the 5.26-μm aerosol extinctions of March/May 1996 from HALOE, but then 

extrapolated back to 1979 based on the ratio of the SAGE I extinctions at 1 μm for 1979 

to the corresponding SAGE II extinctions of 1996.  A minor extrapolation was also 

performed to convert the HALOE extinctions from 5.26 to 6.9 µm.  However, the near-

background aerosols of the LIMS time period have only a minor effect for the forward 

radiance model of its H2O channel.  On the other hand, the accounting for CH4 leads to a 

reduction of tropical H2O mixing ratios by 15% between about 40 to 7 hPa.  Effects of 

horizontal temperature gradients along the view path for the tangent-layer have also been 

accounted for to first order within the V6 algorithm (Remsberg et al., 2004). 

 

The V6 H2O retrievals are based on a downward, onion-peeling approach, rather than an 

optimal estimation procedure.  Retrievals began where signal-to-noise (S/N) values for 

the radiances exceed a value of 1.5—in the lower mesosphere.  V6 temperatures are 
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warmer than those of V5 by 1 to 2 K at and above the stratopause, so the useful V6 

values of H2O begin several layers lower than for V5.  A constant H2O value of 6.5 ppmv 

was used in the LIMS forward radiance model to estimate the effects of water vapor 

radiance above the altitude of the first retrieved layer.  That assumed value is based on 

observations of H2O for the lower mesosphere from HALOE and MLS and from ground-

based microwave measurements of the 1990s, with a slight downward adjustment for the 

lower values of CH4 and their oxidation to H2O for the 1978/79 period (Remsberg et al., 

1984).   

 

2.2  LIMS V6 zonal mean distributions of H2O 

Figure 2(a) is the zonally-averaged distribution of V6 H2O for 15 November 1978 from 

its descending (north-to-south or local nighttime) orbital segments.  General features that 

are apparent are: (1) the increase of water vapor from the lower to the upper stratosphere 

due to the chemical conversion of CH4 to water vapor with altitude, (2) the increase of 

water vapor in the lower stratosphere from near the Equator to higher latitudes or from 

the entry region of dry air to the stratosphere to a region of more well-mixed air, and (3) a 

region of rapid increase from the “tropical hygropause” to just below the tropopause near 

100 hPa, where the water vapor begins to increase rapidly.  In addition, many of the low 

altitude portions of the profiles were cutoff due to a first-order screening for the presence 

of the interfering emissions from clouds, as evaluated based on the character of the 

corresponding LIMS ozone profiles that are affected very little by the increasing water 

vapor of the upper troposphere (Remsberg et al., 2007). 
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Only a very few (less than 10) middle latitude, correlative water vapor profiles were 

obtained during 1978/79 for the purpose of validating the LIMS H2O profiles.  Those few 

comparisons indicate that the LIMS V6 values are higher by 10 to 15% from about 10 to 

70 hPa, but within the estimated accuracies of about +/-20% for both the comparison 

measurements (Russell et al., 1984) and the LIMS V6 data themselves (see also Section 

3).  Consequently, in this report we are opting to show qualitative comparisons of the 

zonal mean distributions of LIMS V6 versus those from Aura MLS, which have been 

validated more extensively.  The MLS Version 2.2 H2O distributions are based on 

profiles having a vertical resolution in the stratosphere (~3-4 km) that is comparable to 

that of LIMS V6.  Precision of individual MLS stratospheric H2O profiles is about 5%, 

and accuracy is of the order of 10% (Lambert et al., 2007). 

 

Figure 2(b) is a plot of MLS V2.2 stratospheric H2O for 15 November 2004 based on 

data that were accessed from (http://mls.jpl.nasa.gov/).  The period of 2004/2005 of the 

MLS data was selected for comparison because the distribution of H2O is affected 

slightly by the QBO-induced circulations of the lower stratosphere and the winds were in 

the same easterly QBO phase as was the case for the LIMS period (Fueglistaler and 

Haynes, 2005).  Although MLS H2O extends to near the mesopause, Figure 2(b) is 

restricted to the same pressure-altitude domain as that of LIMS in Figure 2(a).  MLS data 

extend from 83S to 83N latitude, whereas the LIMS plot covers only from 64S to 84N.  It 

is noted that there is a vertical oscillation in the MLS v2.2 H2O distribution near 30 hPa 

that stretches across most latitudes; that feature is an artifact due to departures from a 
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linear signal response at that level.  The MLS data were smoothed to first order according 

to the prescription in Lambert et al. (2007), prior to the generation of Figure 2(b).  

  

The patterns of zonally-averaged water vapor agree well in most respects between LIMS 

and MLS, and their absolute values agree within about 10% in the middle stratosphere.   

MLS has values at 3 hPa that are slightly larger than those of LIMS, a finding that is 

consistent with the fact that CH4 has been increasing in the stratosphere since the LIMS 

time period.  The respective meridional gradients of H2O are largest in the subtropics of 

the middle stratosphere, which is characteristic of the net transport of the Brewer/Dobson 

circulation plus the slow chemical conversion of CH4 to H2O with altitude.  The altitudes 

of the tropical hygropause and the magnitudes of the minimum water vapor are also 

similar for the LIMS and MLS distributions of Figure 2, indicating that the effects of the 

finite FOV and, in particular, the vertical weightings for the temperature and species are 

being handled properly in the forward radiance model of LIMS V6.  That agreement is 

also an important indicator of the good accuracy of the LIMS V6 T(p) and of the 

associated pressure registration of its water vapor radiances.  On the other hand, one can 

clearly see the effects of dehydration in the MLS data at 60S, but not in the LIMS cross 

section at the same latitude.  This difference is most likely an indication of the expanded 

area and persistence of the cold, wintertime southern polar vortex and its associated polar 

stratospheric clouds (PSC) during the intervening 26 years (WMO, 2007).  We will show 

LIMS and MLS comparisons for February and May in Section 4, so that one can also 

judge the level of agreement for the seasonal variations of their water vapor distributions. 
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 As with LIMS V5, no corrections are made for the vibrationally-excited (non-LTE) H2O 

emissions, the effects of which are most significant in the mesosphere during daytime but 

which extend down to the uppermost stratosphere, too (Mertens et al., 2002).  Figure 3 

shows that the retrieved, zonally-averaged daytime V6 H2O is larger than that for 

nighttime by about 0.4 to 0.8 ppmv in the upper stratosphere for November 15.  Although 

there are rather large variations in those differences with latitude, note that there is almost 

no difference poleward of about 60N (twilight or darkness for both the LIMS ascending 

and descending orbital segments).  The nighttime LIMS H2O distributions ought to be 

more accurate because the effect of any non-LTE bias is much smaller in the absence of 

sunlight.  But, the effects of non-LTE emissions on the LIMS V6 H2O of the upper 

stratosphere are also complicated by the fixed H2O value of 6.5 ppmv that was used for 

both day and night in the LIMS forward model above the first retrieved layer.  Thus, the 

day/night differences of the upper stratosphere are not due solely to the non-LTE effects.  

Day/night H2O differences at 10 hPa and through the lower stratosphere are less than 

about 0.4 ppmv.  Thus, if one wants to obtain better detail about the daily variations and 

the transport of H2O with longitude, it is considered acceptable to combine the ascending 

(daytime) and descending (nighttime) LIMS data in that pressure-altitude range.  

 

3.  Estimates of Error for Single Profiles 

 

Figure 4 is an estimate of the precision for a V6 H2O profile, as obtained from sets of 

about 6 scans along each of the orbital segments between 25S and 35S latitude on 1 

February 1979, i.e., for a season when the large-scale, zonal wave activity was small for 
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the stratosphere.  The profile points in Figure 4 are actually based on the minimum 

standard deviation (SD) values from among all the sets of the separate descending (open 

diamonds) and then the ascending (solid diamonds) orbital segments.  Even though there 

must be effects of atmospheric variability contained in them, those SD values are no 

worse than about 4% through much of the stratosphere.  The much larger SD values near 

100 hPa may be due to not having screened effectively for the emissions from thin cirrus.  

Single profiles of H2O also have higher SD values near 1.3 hPa because digitization and 

detector noise is significant for the measured radiances at and above that level. 

 

Table 1 summarizes our calculations of precision (or random error) based on S/N, as well 

as the effects of systematic errors for a single H2O profile.  The precision is no worse 

than about 5% through most of the stratosphere, and it is a slight improvement from that 

for V5--a consequence of the better vertical sampling for the radiances plus the use of a 

5-interleave retrieval procedure for obtaining the final V6 profiles (Remsberg et al., 

2004).  Our calculated precisions are somewhat larger than the SD values of Figure 4. 

 

Estimates of the systematic errors in Table 1 due to radiometric bias, H2O line parameter 

uncertainties (8%), the main IFOV lobe, and the approximations for the forward model 

were adopted from the simulation studies in Russell et al. (1984).  The H2O profiles have 

a bias of order 10 to 15% due to estimates of the V6 temperature biases from Remsberg 

et al. (2004, their Table 2, row g), which are less than ±1.6 K as shown in parentheses in 

Table 1.  Furthermore, there is no evidence that the estimated V6 T(p) biases of Table 1 

are all of the same sign.  That finding is based on the V5 versus rocketsonde/radiosonde 
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T(p) comparisons in Remsberg et al. (1984b), followed by the zonal mean, V6 minus V5 

differences for T(p) in Remsberg et al. (2007, their Figure 3).  Uncertainties for the O2 

continuum model are of order 10%, although the effect of that model is only important 

for the retrieved H2O from about 50 to 100 hPa.  The root-sum-squares (RSS) of the bias 

errors that were evaluated are given in the bottom row of Table 1 and are of the order of 

19% in the upper stratosphere, 15% in the middle stratosphere, and 26% in the lower 

stratosphere.  Primary components of that total error are from the uncertainties of the 

main IFOV lobe and from the estimated temperature biases. 

 

There are other sources of bias error that have not been fully characterized.  For example, 

errors in the spatial side lobes of the IFOV function have not been verified, but their 

effects appear to be small based on the quality of the V6 H2O distributions.  Small 

uncertainties are present from the interfering aerosol emission of the lower stratosphere.  

The distribution of that emission varies with altitude and latitude, and it is representative 

of the near background aerosol layer of 1978/79.  It is also noted that the same monthly 

and zonally-averaged distribution of aerosol emission was used for making a correction 

in the forward model for all months of the LIMS dataset.  Biases for the interfering CH4 

have their largest effect in the middle to lower stratosphere at tropical latitudes, but they 

lead to errors in H2O that are no greater than a few percent.  There are also small biases in 

the retrieved H2O values at 1.3 to about 2.0 hPa as a result of assuming the constant 

mixing ratio of 6.5 ppmv for the forward model above the top retrieved layer.  Some 

sources of bias error (such as that from temperature) also vary slightly according to the 

atmospheric state.  In general, the RSS values of Table 1 are considered as worse case 
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scenario estimates of the true total bias error for a single profile.  Finally, the major 

stratospheric components of the aggregate (~10%) bias error profile for the comparison 

MLS H2O data are from pointing uncertainties, forward model assumptions, and the 

optimal estimation formulation for its retrieval (Lambert et al., 2007). 

 

4.  LIMS/MLS Water Vapor Comparisons for February and May 

 

Figure 5(a,b) is a comparison of the zonally-averaged H2O distributions for 15 February 

from LIMS in 1979 versus that from MLS in 2005.  The agreement between the two is 

similar to that of November (Figure 2), except for the region of the hygropause which is 

nearer to the tropopause in February than in November.  Specifically, the tropical 

minimum for 15 February is near 50 hPa to 70 hPa (~20 to 18 km) from LIMS but is near 

80 hPa to 100 hPa (~17.5 to 16 km) from MLS.  Few of the tropical LIMS profiles 

actually extend to 100 hPa, and it is very likely that even those few contain effects of 

residual emissions from thin cirrus.  Limb infrared measurements are very sensitive to 

emissions from clouds, while the microwave measurements are much less so.  Further, 

when the finite FOV measurements of LIMS are nearing the tropopause, the associated 

retrieved H2O will have a high bias even for clear skies because of the sharp increase in 

the water vapor of the upper troposphere.  Therefore, one should be cautious about 

interpreting the LIMS H2O within about 2 km of the tropopause, or when lower than 

about 18 km in the tropics to about 13 km at high latitudes. 
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In the uppermost stratosphere and at high latitudes of the winter hemisphere the MLS 

H2O is greater than that of LIMS V6 by 0.5 to 1.0 ppmv, partly a result of the slow 

increase of atmospheric CH4 from 1978/79 to 2004/05 and its conversion to H2O in the 

upper stratosphere.  The maximum values from the MLS data also support our choice of a 

constant value of 6.5 ppmv for the LIMS H2O above the first retrieved layer in the lower 

mesosphere for the LIMS forward model. 

 

There are indications in the February MLS data of effects of descending air from near the 

stratopause to the middle stratosphere by its elevated values of H2O in the NH polar 

vortex.  Conversely, the largest polar H2O from LIMS is centered near 30 hPa, and the 

temperatures are too warm in mid February for the occurrence of emissions from PSC.  It 

is noted that the profile segments that were obviously contaminated by PSC earlier in the 

winter were screened out of the individual LIMS profiles, although residual effects may 

still be present for those periods.  A listing of those occurrences is available in a separate 

file that is part of the archived LIMS dataset.  An important difference for the LIMS 

versus the MLS retrieval of water vapor is the high sensitivity of the LIMS radiances to 

the temperature along its line-of-sight emissivity mass path.  If there are slight errors in 

the horizontal (or vertical) temperature gradients, there will also be biases in the retrieved 

LIMS water vapor (see Table 1).  Such biases are a distinct possibility at the edges of the 

polar vortex and during the sudden stratospheric warming (SSW) periods of January and 

February 1979.  It is presumed that errors in those gradients are the main cause of the 

apparent excess of polar H2O from LIMS, spanning from 8 to 80 hPa in mid February.  
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Figure 6(a,b) shows the LIMS/MLS comparisons for 16 May, and again the distributions 

are similar in most respects.  However, Figure 6a shows that there is an upward and 

poleward extension of relatively low values of LIMS water vapor (<5.0 ppmv) at about 

50S, 3 hPa for May, when there ought to be a slow descent of air from the lower 

mesosphere with higher H2O values.  The MLS plot of Figure 6b does not show a similar 

relative minimum.  The region of 50S, 3 hPa is very near to the edge of the polar vortex, 

according to the enhanced meridional gradients of scaled potential vorticity (sPV) and as 

indicated in the equivalent latitude versus potential temperature (or EqL/θ) plots of the 

daily MLS water vapor for May (not shown, but viewable at the MLS Website). 

In the northern hemisphere there is only a hint of a relative minimum at 50N, 3 hPa in the 

LIMS plot of Figure 2a for November, when the polar vortex has a similar seasonal 

configuration.  The corresponding MLS plot of Figure 2b shows an H2O distribution that 

is very much like that of LIMS.  The good agreement between LIMS and MLS in 

November, but not in May, is explained as follows.  The descending orbital segments of 

LIMS near 50S for May were obtained when the Nimbus 7 satellite was viewing from 

above the South Pole and the LIMS tangent view path was parallel to the meridional 

temperature gradient (Remsberg et al., 1986).  But because the true temperature field 

poleward of 64S was not known, the T(p) values at 64S were merely extrapolated 

poleward for the LIMS emissivity mass path algorithm. Those extrapolated temperatures 

are too warm and not representative of the southern polar vortex region in May.  Such a 

warm bias means that less of the total radiance in the water vapor channel is attributed to 

water vapor in the forward model, leading to the relative minimum in LIMS H2O that was 

retrieved.  The corresponding zonal mean of the ascending LIMS H2O does not have a 
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similar relative minimum at 50S, 3 hPa, because the LIMS viewing direction for those 

orbital segments was more nearly along a line of latitude, and thus the temperature along 

its view path was known.  For the northern hemisphere the LIMS temperatures were 

retrieved to 84N, and its orbital viewing geometry was also more nearly perpendicular to 

the temperature gradient.  As a result, the LIMS temperatures are likely more accurate in 

the polar vortex region for the corresponding northern season (c.f., Figure 2a for 

November). 

 

5.  Initial Scientific Findings from LIMS V6 Water Vapor 

 

The Stratospheric Processes and their Role in Climate (SPARC) Project Office has 

initiated a Re-assessment of the Water Vapor in the Upper Troposphere and Lower 

Stratosphere (UT/LS) study that is intended to be an update of Kley et al. (2000).  The 

LIMS V6 dataset can be used to extend the historical record of the changes in UT/LS 

water vapor from the 1978/79 period (see also Rosenlof et al. (2001)).  As an example, 

the LIMS/MLS comparison plots of Figures 2, 5, and 6 show the effects of the classic 

Brewer/Dobson (BD) circulation in their respective zonal-mean water vapor cross 

sections, at least for the middle and upper stratosphere. 

 

The isolines of low water vapor mixing ratio above the tropopause are sloping toward 

higher pressures from low to high latitudes, in accord with a net meridional transport of 

air along isentropic surfaces.  It also appears that the relatively dry air of the tropical 

lower stratosphere is being transported poleward more effectively in the MLS versus the 
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LIMS H2O cross sections.  Note that it is presumed that the patterns of the respective, 

zonal-mean LIMS and MLS H2O distributions are correct.  Such differences may be an 

important tracer diagnostic for a climatological change in the meridional transport of the 

lower stratosphere (Li et al., 2008; Thompson and Solomon, 2009; Tuck et al., 1997).  

For instance, an increase in the eddy heat flux due to wave activity will accelerate the 

Brewer-Dobson (BD) circulation and lead to lower zonal mean cold-point temperatures at 

the tropical tropopause.  More specifically, Dhomse et al. (2008) reported on a distinct 

anti-correlation between tropical water vapor values from 16 to 20 km and the September 

to February eddy heat flux at 50 hPa of both hemispheres.  They showed that the tropical 

temperature anomalies were cold and the eddy heat flux was enhanced during the period 

of the MLS measurements.  On the other hand, the tropical temperature anomalies are 

warm during the time of LIMS, indicating a corresponding reduction in the eddy heat 

flux and the associated BD circulation. 

 

Differences near 60S in the MLS and LIMS H2O of Figure 2 for the lower stratosphere 

indicate the effects of enhanced dehydration toward the outer regions of the southern 

polar vortex in the decades since the Nimbus 7 LIMS experiment.  A more complete 

examination of the state of the southern hemisphere polar winter stratosphere of 1978 

should be undertaken to estimate the effects of dehydration at that time and for 

comparison with the measured values from LIMS in November and late October 1978.   

 

The sequence of MLS water vapor of February, May, and then November (Figures 5b, 

6b, and 2b) indicates an annual cycle in H2O in the lower tropical stratosphere, the so-
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called “tape recorder” response first described by Mote et al. (1996).  In other words, the 

location and movement of the MLS hygropause is in good accord with an annual cycle 

for H2O, which has its minimum at the cold tropopause in February and is then carried 

upward slowly through the rest of the year.  Figure 7a shows the 7-month time series of 

tropical (10S to 10N) H2O from 50 to 10 hPa from LIMS V6.   Note that we have plotted 

time series of the mixing ratio rather than the mixing ratio anomalies because we do not 

have one complete year of data for defining its annual average.  A “tape recorder” signal 

is clearly evident above the 30-hPa level in Figure 7a.  Minimum values occur in 

February, when the associated LIMS time series of the zonal average T(p) indicate the 

coldest values (see Figure 7b).  The upward extension of low water vapor mixing ratios to 

above 30 hPa in February may be a consequence of a slight warm bias for the time when 

the retrieved tropical temperatures are coldest. 

 

Visual inspections of the LIMS water vapor values in the middle stratosphere for 

November, February, and May (Figures 2, 5, and 6) indicate slightly larger values at 

middle latitudes in the northern than in the southern hemisphere.  In other words, there is 

a slight hemispheric asymmetry in the H2O values, most likely due to larger descent rates 

for polar air from the upper to the middle stratosphere in the northern hemisphere 

followed by meridional mixing from polar to middle latitudes.  There may also be a 

northern subtropical contributions from the relatively large “entry-level H2O” (or H2Oe) 

associated with the summer monsoon circulation (Jackson et al., 1998).  It is less likely 

that there is a mid-stratosphere influence in the southern hemisphere due to the 

wintertime polar dehydration over Antarctica (Mote, 1995). 
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Earlier estimates of H2Oe from LIMS by Jones et al. (1986) and Hansen and Robinson 

(1989) must be revised upward now because of the greater values of the V6 H2O.  For 

example, using the descending LIMS V6 H2O and the SAMS CH4 for the months of 

January through May 1979, we obtain a value of 6.8±0.3 ppmv for the quantity 2CH4 + 

H2O at 40 N and between 3 and 10 hPa.  Because CH4 at the tropical tropopause at that 

time was about 1.5 ppmv, we infer H2Oe of 3.8±0.3 ppmv.  Mid to upper stratosphere 

values of 2CH4 + H2O at 40S are only about 6.5 ppmv, so H2Oe is about 0.3 ppmv less or 

3.5 ppmv.  This range of H2Oe values agrees well with that inferred from the in situ and 

satellite measurements of the late 1980s and the 1990s (see Table 2.4 of Kley et al. 

(2000)).  It is also qualitatively consistent with the warm anomalies of the cold-point 

tropopause temperatures of the late 1970s. 

 

Both the vertical and along-orbit sampling of the LIMS H2O dataset represent significant 

improvements from the V6 profiles.  For this reason daily water vapor fields on pressure 

surfaces exhibit good continuity, making it possible to resolve some of the details of the 

variations and the large-scale transport of water vapor with altitude, latitude, and 

longitude.  As an example, Figure 8a shows the distribution of LIMS H2O of 7 February 

1979 on the 31.6-hPa surface for the northern hemisphere, as generated from zonal 

Fourier analyses of the V6 profiles plus minor interpolations for their coefficients in time 

and onto grid spaces.  One can see a region of low H2O (4.5 ppmv) at about the 

Greenwich meridian and 55 N latitude; it is co-located with temperatures near 195 K or 

just above the threshold for deposition to water ice.  The associated plot of the LIMS 
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geopotential height is in Figure 8b.  It shows the effects of underlying domes of high 

pressure over Siberia and the Aleutians, flanking an intense polar vortex region that is 

being drawn out toward lower latitudes.  Qualitatively, there is a large-scale, 

counterclockwise circulation about the outer edge of the vortex that may have transported 

lower values of water vapor toward the vortex from middle latitudes, while peeling 

higher values of H2O from the vortex edge toward the middle latitudes.  A more complete 

analysis of the transport of H2O is possible during this period using sequences of daily 

plots of the water vapor along with calculated wind fields from the concurrent surface 

maps of the LIMS geopotential heights. 

 

The LIMS instrument and measurement concept is also the prototype for the Sounding of 

the Atmosphere using Broadband Emission Radiometry (SABER) satellite experiment 

(Russell et al., 1999), which began measurements in January 2002 and is still operating in 

2009.  SABER measures water vapor radiance profiles from the tropopause (or cloud 

tops) to the upper mesosphere and with nearly a 2 km vertical resolution.  Its algorithm 

for obtaining useful water vapor profiles is fashioned after that of LIMS V6, but with the 

important addition of a forward model for the non-LTE radiances of the mesosphere and 

its consequences for the retrieval of H2O profiles down into the upper stratosphere. 

 

The SABER v1.07 algorithm gives water vapor values in the mesosphere that are too 

large because of small but significant cold biases in the SABER T(p) (Remsberg et al., 

2008).  The estimates of LIMS V6 accuracy in Table 1 clearly show that small biases in 

the temperature profile affect the LTE retrieval of water vapor from limb radiances in the 



[23] 

 

6.4 to 7.3 µm spectral region.  However, based on the good agreement between the LIMS 

V6 and the MLS water vapor distributions, there is every reason to expect that the 

SABER H2O profiles will also be of very good quality once the bias in the SABER T(p) 

is accounted for.  Multi-year, near global-scale studies of the transport of middle 

atmospheric water vapor are anticipated from the LIMS, MLS, and SABER datasets. 

 

6.  Conclusions 

 

The radiances of the Nimbus 7 LIMS experiment were reconditioned and new retrievals 

of them were conducted with a V6 algorithm to make its products more compatible with 

those of follow-on satellite experiments.  Single profiles of the LIMS V6 H2O have 

improved precision (5%) and accuracies (19% at 3 hPa, 14% at 10 hPa, and 26% at 50 

hPa), as compared with the original V5 product.  Qualitative comparisons with the Aura 

MLS V2.2 H2O reveal similar patterns and absolute values between about 70 hPa and 3 

hPa.  However, one should be cautious about interpreting features in the LIMS V6 

profiles of the lowermost stratosphere, in particular within about 2 km of the tropopause 

where the effects of residual emissions from cloud tops may still be present.  The profile 

segments from about 3.0 hPa to 1.3 hPa contain day/night differences of order 0.6 ppmv 

(or ~10%), due to not having corrected for the effects of non-LTE emissions near to and 

above the stratopause. 

 

The V6 Level 2 (profile) data can be obtained by ftp download from the Goddard Earth 

Sciences and Data Information Services Center (http://daac.gsfc.nasa.gov/) under the 

http://daac.gsfc.nasa.gov/�
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menu entitled “Remote Sensing Data”.  Individual LIMS V6 profiles have a point spacing 

of 0.375 km.  Their effective vertical resolution is 3.7 km, primarily because of the finite 

FOV of the LIMS H2O channel.  Retrievals were conducted for every adjacent pair of 

profiles along the orbits, yielding an effective spacing of one profile for every 1.6 degrees 

of latitude. 

 

The good precision of the V6 profiles provides for daily surface maps of stratospheric 

water vapor for studies of its large-scale transport.  Although accuracies for single 

profiles of the LIMS V6 H2O may be no better than about 15%, the relative accuracies 

for its zonal mean distributions are much better than that.  Analyses of H2O time series 

reveal a tropical tape recorder signal plus the effects of a relatively weak, Brewer-Dobson 

circulation.  Average “entry-level” values for the LIMS V6 H2O vary from 3.5 ppmv as 

inferred from the data of the southern hemisphere versus 3.8 ppmv from the northern 

hemisphere. 
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Figure Legends 

 

1. Locations and relative sizes of the LIMS channel fields-of-view (FOV) projected 

to the limb at the tops and bottom of a down/up scan pair. 

  

2.  (a) Zonal mean of LIMS V6 descending orbital (nighttime) H2O for 15 

November 1978.  Contour interval is 1.0 ppmv; (b) Zonal mean of MLS V2.2 

H2O for 15 November 2004. 

 

3.  Zonal-mean cross section of the ascending (day) minus descending (night) 

differences in LIMS V6 H2O for 15 November 1978.  Contour interval is 0.2 

ppmv. 

 
  

4. Profiles of the minimum standard deviation (SD) values of LIMS V6 H2O (in %) 

from its sets of descending (open diamonds) and ascending (solid diamonds) 

orbital crossings between 25S and 35S latitude on 1 February 1979. 

 

5. As in Figure 2, but (a) for LIMS V6 descending H2O of 15 February 1979 and (b) 

for MLS for 15 February 2005. 

 

6. As in Figure 2, but (a) for LIMS V6 descending H2O of 16 May 1979 and (b) for 

MLS for 16 May 2005. 
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7. (a)  Time series of zonally-averaged LIMS V6 H2O mixing ratio (in ppmv) for 10 

S to 10 N and from 50 to 10 hPa; color contour increment is 0.2 ppmv and plot 

extends only to 25 May 1979.  (b)  As in 7(a), but for LIMS V6 temperatures with 

a color change every 4 K.  Tic marks on the abscissa denote Day 15 of each 

month. 

 
8. Polar plot of LIMS V6 northern hemisphere data at 31.6 hPa (mb) for 7 February 

1979--(a) H2O with a contour interval of 0.5 ppmv; (b) geopotential height from 

21.2 to 23.6 with a contour interval of 0.1 gpkm.  
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Table 1—Estimates of Precision and Accuracy (in %) for Profiles of LIMS V6 H2O 
 
Pressure (hPa)  100    50    30    10     5     3 
       
Random (or 
PRECISION) 

    5     5     5     5     6     9 

       
       
Radiometric Bias     5     5     5     5     5     5 
 
Temperature Bias 
(Amt. of T Bias) 

    
   16 
 (1.1 K) 

    
   18 
 (1.3 K) 

    
   11 
 (1.1 K) 

     
    8 
 (1.0 K) 

    
   14 
 (1.5 K) 

    
   15 
 (1.6 K) 

 
H2O Line 
Parameters (8%) 

     
    8 

     
    8 

     
    8 

     
    8 

     
    8 

     
    8 

 
O2 Cross Section  
( 10%) 

    
   11 

     
    6 

     
    2 

     
    1 

     
    0 

     
    0 

Forward Model     5     5     5     5     5     5 
 
Main IFOV Lobe  

    
   15 

    
   15 

     
    5 

     
    5 

     
    5 

     
    5 

       
RSS of Bias 
Errors (or 
ACCURACY) 

   27    26    16    14    18    19 
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Figure 1—Locations and relative sizes of the LIMS channel fields-of-view 

(FOV) projected to the limb at the tops and bottom of a down/up scan pair. 
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Figure 2a—Zonal mean of LIMS V6 descending orbital (nighttime) H2O for 15 
November 1978.   Contour interval is 1.0 ppmv. 
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Figure 2b—Zonal mean of MLS V2.2 H2O for 15 November 2004. 
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Figure 3—Zonal-mean cross section of the ascending (day) minus descending (night) 
differences in LIMS V6 H2O for 15 November 1978.  Contour interval is 0.2 ppmv. 
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Figure 4—Profiles of the minimum standard deviation (SD) values of LIMS V6 
H2O (in %) from its sets of descending (open diamonds) and ascending (solid 
diamonds) orbital crossings between 25S and 35S latitude on 1 February 1979. 
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Figure 5a—As in Figure 2, but for LIMS V6 descending H2O of 15 February 1979. 
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Figure 5b—As in Figure 2, but for MLS for 15 February 2005. 
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Figure 6a—As in Figure 2, but for LIMS V6 descending H2O of 16 May 1979. 
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Figure 6b—As in Figure 2, but for MLS for 16 May 2005. 
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Figure 7a— Time series of zonally-averaged LIMS V6 H2O mixing ratio (in 

ppmv) for 10 S to 10 N and from 50 to 10 hPa; color contour increment is 0.2  

ppmv and plot extends only to 25 May 1979. 
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Figure 7b--As in 7(a), but for LIMS V6 temperatures with a color change 

every 4 K.  Tic marks on the abscissa denote Day 15 of each month. 
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Figure 8a—Polar plot of LIMS V6 northern hemisphere data at 31.6 hPa (mb) for 7 
February 1979—H2O with a contour interval of 0.5 ppmv.  
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Figure 8b—Polar plot of LIMS V6 northern hemisphere data at 31.6 hPa (mb) for 7 February 
1979—geopotential height from 21.2 to 23.6 with a contour interval of 0.1 gpkm. 


